The active site of melanopsin: the biological clock photoreceptor.
نویسندگان
چکیده
The nonvisual ocular photoreceptor melanopsin, found in the neurons of vertebrate inner retina, absorbs blue light and triggers the "biological clock" of mammals by activating the suprachiasmatic nuclei (a small region of the brain that regulates the circadian rhythms of neuronal and hormonal activities over 24 h cycles). The structure of melanopsin, however, has yet to be established. Here, we propose for the first time a structural model of the active site of mouse melanopsin. The homology model is based on the crystal structure of squid rhodopsin (λ(max) = 490 nm) and shows a maximal absorbance (λ(max) = 447 nm) consistent with the observed absorption of the photoreceptor. The 43 nm spectral shift is due to an increased bond-length alternation of the protonated Schiff base of 11-cis-retinal chromophore, induced by N87Q mutation and water-mediated H-bonding interactions with the Schiff base linkage. These findings, analogous to spectral changes observed in the G89Q bovine rhodopsin mutant, suggest that single site mutations can convert photopigments into visual light sensors or nonvisual sensory photoreceptors.
منابع مشابه
The expression of melanopsin and clock genes in Xenopus laevis melanophores and their modulation by melatonin
Vertebrates have a central clock and also several peripheral clocks. Light responses might result from the integration of light signals by these clocks. The dermal melanophores of Xenopus laevis have a photoreceptor molecule denominated melanopsin (OPN4x). The mechanisms of the circadian clock involve positive and negative feedback. We hypothesize that these dermal melanophores also present per...
متن کاملPredicted 3D-structure of melanopsin, the non-rod, non-cone photopigment of the mammalian circadian clock, from Djungarian hamsters (Phodopus sungorus).
Melanopsin is the photopigment of the retinal ganglion cells, which are involved in the synchronization of the biological clock in the suprachiasmatic nucleus (SCN) of mammals with the exogenous photoperiod. So far, no information about the three-dimensional (3D) structure of melanopsin is available. Here we report the predicted structure based on the protein-coding region of the nucleotide seq...
متن کاملMelanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity.
The primary circadian pacemaker, in the suprachiasmatic nucleus (SCN) of the mammalian brain, is photoentrained by light signals from the eyes through the retinohypothalamic tract. Retinal rod and cone cells are not required for photoentrainment. Recent evidence suggests that the entraining photoreceptors are retinal ganglion cells (RGCs) that project to the SCN. The visual pigment for this pho...
متن کاملDistinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance
Photoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses ...
متن کاملMelanopsin and mechanisms of non-visual ocular photoreception.
In addition to rods and cones, the mammalian eye contains a third class of photoreceptor, the intrinsically photosensitive retinal ganglion cell (ipRGC). ipRGCs are heterogeneous irradiance-encoding neurons that primarily project to non-visual areas of the brain. Characteristics of ipRGC light responses differ significantly from those of rod and cone responses, including depolarization to light...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 48 شماره
صفحات -
تاریخ انتشار 2012